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Abstract

The heat and mass transfer characteristics of natural convection about a vertical surface embedded in a saturated

porous medium subjected to a magnetic field is numerically studied, by taking into account the diffusion-thermo

(Dufour) and thermal-diffusion (Soret) effects. The governing partial differential equations are transformed into a set of

coupled differential equations, which are solved numerically using a finite difference method. Dimensionless velocity,

temperature and concentration profiles are presented graphically for various values of the magnetic number M and

Lewis number Le, and for fixed values of the Dufour number Df , Soret number Sr and buoyancy number N . Three cases

are considered and presented in tables, for the local Nusselt number and local Sherwood number corresponding to

Le ¼ 1 and various values of M , N , Df and Sr. Increasing the value of M increases the local Nusselt number and local

Sherwood number.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Coupled heat and mass transfer by natural convec-

tion in a fluid-saturated porous medium has attracted

considerable attention in the last years, due to many

important engineering and geophysical applications.

Recent books by Nield and Bejan [1] and Ingham and

Pop [2,3] present a comprehensive account of the

available information in the field.

Thermal diffusion, also called thermodiffusion or

Soret effect [4] corresponds to species differentiation

developing in an initial homogeneous mixture submitted

to a thermal gradient. On the other hand, the Soret effect

has been also utilised for isotope separation and in

mixture between gases with very light molecular weight,

such as H2 or He, and of medium molecular weight,

such as H2 or air.

In many studies Dufour and Soret effect are ne-

glected, on the basis that they are of a smaller order of

magnitude than the effects described by Fourier’s and
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Fick’s laws. There are however, exceptions. Eckert and

Drake [5] present several cases when the Dufour effect

cannot be neglected. Benano-Melly et al. [6] have ana-

lyzed the problem of thermal diffusion in binary fluid

mixtures, lying within a porous medium and subjected to

a horizontal thermal gradient. The onset of Soret-driven

convection in an infinite cell filled with a porous medium

saturated by a binary fluid was studied by Sovran et al.

[7]. Thermal-diffusion (Soret) and difusion-thermo

(Dufour) effects have been found to appreciably influ-

ence the flow field in free convection boundary-layer

over a vertical surface embedded in a porous medium

[8].

There has been a considerable interest in studying the

effect of a magnetic field on natural convection heat and

mass transfer in porous media. In a recent paper Cheng

[9] used an integral method to study the natural con-

vection heat and mass transfer from vertical plates em-

bedded in in electrically conducting fluid saturated

porous media with constant surface temperature con-

centration. The application of a transverse magnetic

field normal to the flow direction was shown to decrease

the Nusselt number and Sherwood number.
ed.



Nomenclature

C concentration

Cp specific heat at constant pressure

Cs concentration susceptibility

Df Dufour number

Dm mass diffusivity

f dimensionless stream function

H0 magnetic field intensity

K Darcy permeability

kT thermal diffusion ratio

Le Lewis number, am=Dm

M magnetic parameter

N sustentation parameter

Rax local Rayleigh number

u, v Darcian velocities in the x and y-direction,
respectively

Sh Sherwood number

T temperature

x, y Cartesian coordinates normal to the plate

and along it, respectively

am thermal diffusivity

bT coefficient of thermal expansion

bC coefficient of concentration expansion

/ dimensionless concentration

l viscosity

le magnetic permeability

m kinematic viscosity

h dimensionless temperature

r electrical conductivity

q density

w stream function

Subscripts

w condition at wall

1 condition at infinity

Superscript
0 differentiation with respect to g
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The objective of this paper is to study simultaneous

heat and mass transfer by natural convection from a

vertical flat plate embedded in electrically conducting

fluid saturated porous medium, using Darcy–Boussinesq

model, including Soret and Dufour effects. The effects of

the governing parameters on the heat and mass transfer

are analyzed.
2. Analysis

Consider the natural convection in a porous medium

saturated with a Newtonian fluid bounded by a vertical

flat plate with constant wall temperature Tw and con-

stant wall concentration Cw. The temperature and con-

centration of the ambient medium are T1 and C1,

respectively, where Tw > T1 and Cw > C1. The x-coor-
dinate is measured along the plate from its leading edge,

and the y-coordinate normal to it. Several assumptions

are used throughout the present paper: (a) the fluid and

the porous medium are in local thermodynamic equi-

librium; (b) the flow is laminar, steady-state and two-

dimensional; (c) the porous medium is isotropic and

homogeneous; (d) the properties of the fluid and porous

medium are constants; (e) the Boussinesq approximation

is valid and the boundary-layer approximation is ap-

plicable.

In-line with these assumptions, the governing

equations describing the conservation of mass, mo-

mentum, energy and concentration can be written as

follows:
ou
ox
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¼ 0 ð1Þ

u 1
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where am and Dm are the thermal diffusivity and mass

difffusivity, Cp and Cs are the specific heat at constant

pressure and concentration susceptibility, kT is the

thermal diffusion ratio, r, le and H0 are electrical con-

ductivity, magnetic permeability and magnetic field

intensity, respectively. Other quantities are defined in the

nomenclature.

The boundary conditions of the problem are

y ¼ 0 : v ¼ 0; T ¼ Tw; C ¼ Cw ð5aÞ

r ! 1 : u ! 0; T ! T1; C ! C1 ð5bÞ

We use the similarity variables proposed by Cheng and

Mynkowycz [10] and used then by Bejan and Khair [11]

w ¼ amRa1=2x f ðgÞ; h ¼ ðT � T1Þ=ðTw � T1Þ;
/ ¼ ðC � C1Þ=ðCw � C1Þ; ð6Þ

n ¼ y
x
Ra1=2x
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where the stream function w is defined in the usual way

u ¼ ow
oy

; v ¼ � ow
ox

ð7Þ

and Rax ¼ gKbðTw � T1Þx=ðmamÞ is the local Rayleigh

number. The governing equations become

f 0 ¼ �h� N/ ð8Þ

h00 � 1

2
f h0 þ Df/

00 ¼ 0 ð9Þ

1

Le
/00 � 1

2
f/0 þ Srh

00 ¼ 0 ð10Þ

where M is the magnetic parameter, defined as
Table 1

Values of Nusselt and Sherwood numbers in case I

M Le N Df

0 1 1.0 0.05

1 1 1.0 0.05

2 1 1.0 0.05

0 1 1.0 0.075

1 1 1.0 0.075

2 1 1.0 0.075

0 1 1.0 0.03

1 1 1.0 0.03

2 1 1.0 0.03

0 1 1.0 0.037

1 1 1.0 0.037

2 1 1.0 0.037

0 1 1.0 0.6

1 1 1.0 0.6

2 1 1.0 0.6

Table 2

Values of Nusselt and Sherwood numbers in case II

M Le N Df

0 1 )0.5 0.15

1 1 )0.5 0.15

2 1 )0.5 0.15

Table 3

Values of Nusselt and Sherwood numbers in case III

M Le N Df

0 1 0.2 0.15

1 1 0.2 0.15

2 1 0.2 0.15

0 1 0.5 0.075

1 1 0.5 0.075

2 1 0.5 0.075

0 1 0.8 0.03

1 1 0.8 0.03

2 1 0.8 0.03
M ¼ Krl2
eH

2
0

l
ð11Þ

Le, Df and Sr are Lewis, Dufour and Soret numbers,

respectively

Le ¼ am
Dm

; Df ¼
DmkTðCw � C1Þ
CsCpamðTw � T1Þ ;

Sr ¼
DmkTðTw � T1Þ

CsCpamðCw � C1Þ
ð12Þ

whilst N is the sustentation parameter

N ¼ bCðCw � C1Þ
bTðTw � T1Þ ð13Þ
Sr Nux=Ra1=2x Shx=Ra1=2x

1.2 0.67678 0.18354

1.2 0.47855 0.12978

1.2 0.30266 0.08209

0.8 0.65108 0.34150

0.8 0.46038 0.24148

0.8 0.29117 0.15273

2.0 0.71444 )0.13597
2.0 0.50519 )0.09869
2.0 0.31951 )0.06241
1.6 0.69686 0.02339

1.6 0.49275 0.01654

1.6 0.31164 0.01047

0.1 0.42002 0.63313

0.1 0.29700 0.44769

0.1 0.18784 0.28315

Sr Nux= Ra1=2x Shx= Ra1=2x

0.4 )0.28512 )0.23211
0.4 )0.20169 )0.16425
0.4 )0.12839 )0.10526

Sr Nux=Ra1=2x Shx=Ra1=2x

0.4 0.46331 0.38100

0.4 0.32762 0.26942

0.4 0.20723 0.17044

0.8 0.55508 0.28764

0.8 0.39250 0.20339

0.8 0.24825 0.12866

2.0 0.67028 )0.13736
2.0 0.47936 )0.09712
2.0 0.29976 )0.06142
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which measures the relative importance of mass and

thermal diffusion in the buoyancy-driven flow. We

notice that it is positive for thermally assisting flows,

negative for thermally opposing flows and zero for

thermal-driven flows. Primes denote differentiation with

respect to g.
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Fig. 1. Variations of (a) velocity, (b) temperature (c) concen-

tration across the boundary layer for N ¼ 1, Df ¼ 0, Sr ¼ 0 and

M ¼ 0.
The transformed boundary conditions are

f ð0Þ ¼ 0; hð0Þ ¼ 1; /ð0Þ ¼ 1 ð14aÞ

f 0 ! 0; h ! 0; / ! 0; as g ! 1 ð14bÞ
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Fig. 2. Variations of (a) velocity, (b) temperature (c) concen-

tration across the boundary layer for N ¼ 1, Df ¼ 0, Sr ¼ 0 and

M ¼ 1.
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We notice that the problem reduces to that formulated

by Bejan and Khair [11] whenM ¼ 0, Df ¼ 0 and Sr ¼ 0.

On the other hand, for M ¼ 0 our Eqs. (8)–(10) sub-

jected to the boundary conditions (14) reduce to (7)–(10)

of Anghel et al. [8].
-0.5

-0.4

-0.3

-0.2

-0.1

0

0 2 4 6 8 10
(a)

    100

Le = 1

  2

   4

 8

10

η

u

0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
(b)

10

1

2

4

Le = 100

η

θ

0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
(c)

1

2

4

8

Le = 100

      10

η

φ

Fig. 3. Variations of (a) velocity, (b) temperature (c) concen-

tration across the boundary layer for N ¼ 1, Df ¼ 0, Sr ¼ 0 and

M ¼ 2.
The parameters of engineering interest for the present

problem are the local Nusselt number and local Sher-

wood number, which are given by the expressions

Nux=Ra1=2x ¼ �h0ð0Þ; Shx=Ra1=2x ¼ �/0ð0Þ ð15Þ
3. Results and discussion

Eqs. (8)–(10) must be solved along with the boundary

conditions (14). Since analytical solutions do not exist,

one has to use numerical techniques. In this paper

a version of the Keller-box method adapted to solve

ordinary differential equations was used [12].

The parameters involved in the present problem are

M , Le, N , Df and Sr. Three cases are considered here,

according to [8]:

• Case I: Le ¼ 1, N ¼ 1, ðDf ; SrÞ ¼ ðð0:05; 1:2Þ;
ð0:075; 0:8Þ; ð0:03; 2:0Þ; ð0:037; 1:6Þ; ð0:6; 0:1ÞÞ

• Case II: Le ¼ 1, N ¼ 1, Df ¼ 0:15, Sr ¼ 0:4
• Case III: Le ¼ 1, ðN ;Df ; SrÞ ¼ ðð0:2; 0:15; 0:4Þ; ð0:5;

0:075; 0:8Þ; ð0:8; 0:03; 2:0ÞÞ.

In each case, the values of the magnetic parameter M
were taken as 0, 1 and 2. Tables 1–3 present local

Nusselt and Sherwood numbers calculated for each set

of parameters. One can readily remark that, for fixed Le,
N , Df and Sr, Nu and Sh decrease as M increases (if

negative values are encountered, the previous assertion

holds for absolute values).

Figs. 1–3 show the dimensionless velocity, tempera-

ture and concentration for the following values of the

parameters: N ¼ 1, Df ¼ 0, Sr ¼ 0, M ¼ ð0; 1; 2Þ and

Le ¼ ð1; 2; 4; 6; 8; 10; 100Þ.
We remark that as M increases, the thickness of the

hydrodynamic/thermal/concentration boundary layer

increases.
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